Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1184). Services for accessing these data are described at the back of the journal.

## References

- Baker, E. N., Hall, D. & Waters, T. N. (1970a). J. Chem. Soc. A, pp. 400-405.
- Baker, E. N., Hall, D. & Waters, T. N. (1970b). J. Chem. Soc. A, pp. 406-409.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
- Drew, M. G. B., Prasad, R. N. & Sharma, R. P. (1985). Acta Cryst. C41, 1755–1758.
- Edwards, C., Gilmore, C. J., Mackay, S. & Stewart, N. (1996). CRYSTAN-GM. Version 6.3.3. Computer Program for the Solution and Refinement of Crystal Structures. MacScience, Japan.
- Ferrari, M. B., Fava, G. G. & Pelizzi, C. (1976). Acta Cryst. B32, 901-908.
- Kitajima, N., Whang, K., Moro-oka, Y., Uchida, A. & Sasada, Y. (1986). J. Chem. Soc. Chem. Commun. pp. 1504–1505.
- Milburn, H., Truter, M. R. & Vickery, B. L. (1974). J. Chem. Soc. Dalton Trans. pp. 841-846.
- Okuno, T., Ohba, S. & Nishida, Y. (1997). Polyhedron, 16, 3765-3774.
- Rigaku Corporation (1993). AFC/MSC Diffractometer Control System. Rigaku Corporation, Tokyo, Japan.
- Suzuki, M., Ishikawa, T., Harada, A., Ohba, S., Sakamoto, M. & Nishida, Y. (1997). *Polyhedron*, 16, 2553-2561.

## Acta Cryst. (1998). C54, 193-195

# A Dimeric Copper(II) 4-Chlorophenoxyisobutyrate Adduct with Methanol and a Monomeric Copper(II) 4-Chlorophenoxyisobutyrate Adduct with Pyridine

Yoshiyuki Kani,<sup>a</sup> Shigeru Ohba,<sup>a</sup> Hideaki Matsushima<sup>b</sup> and Tadashi Tokii<sup>b</sup>

<sup>a</sup>Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223, Japan, and <sup>b</sup>Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840, Japan. E-mail: ohba@chem.keio.ac.jp

(Received 1 September 1997; accepted 2 October 1997)

## Abstract

In the crystal structure of tetrakis( $\mu$ -4-chlorophenoxyisobutyrato-O, O')di(methanol-O)dicopper(II) dimethanol solvate, [Cu(pciba)<sub>2</sub>(CH<sub>3</sub>OH)]<sub>2</sub>.2CH<sub>3</sub>OH (pcibaH is 4-chlorophenoxyisobutyric acid, C<sub>10</sub>H<sub>11</sub>ClO<sub>3</sub>), there is a dinuclear Cu<sup>II</sup> complex which has a typical cage structure with a Cu···Cu distance of 2.6437 (4) Å. The magnetic -2J value is  $360 \text{ cm}^{-1}$  ( $H = -2JS_1.S_2$ ). In the crystal structure of *trans*-bis(4-chlorophenoxy-isobutyrato-O, O') dipyridinecopper (II), [Cu(pciba)<sub>2</sub>-(C<sub>5</sub>H<sub>5</sub>N)<sub>2</sub>], the monomeric Cu<sup>II</sup> complex has a distorted octahedral coordination.

## Comment

The dimeric title compound, (I), has a center of symmetry. The Cu1—O4 bond length is 1.991(2)Å, which is ca 0.02 Å longer than the other Cu1-O(carboxyl) bonds as a result of the hydrogen bond between the O4 atom and crystal methanol (O11). The dimeric copper(II) complexes related by translation along c are connected by two hydrogen-bond bridges,  $Cu1 - O4 + H11 - O11 + H10^{i} - O10^{i} - Cu^{i}$  and  $Cu1 - Cu^{i}$ O10—H10··· $O11^{i}$ — $H11^{i}$ ··· $O4^{i}$ — $Cu^{i}$  [symmetry code: (i) 1-x, -y, -1-z]. Several kinds of dimeric copper(II) phenoxyalkanoates have been prepared and their crystal structures published (Reck & Jaehnig, 1979; Smith et al., 1985; Mak et al., 1987). However, their magnetic data were not reported. In this study, the magnetic susceptibility of (I) was measured using the Faraday method over a temperature range of 80-300 K, and the -2J and g values were determined to be  $360 \text{ cm}^{-1}$ and 2.22, respectively, with the mole fraction of the monomeric Cull impurity being 1.3%. It was assumed that crystal methanol molecules were lost from the crystals under reduced pressure. The -2J value is comparable with those of [Cu(Ph<sub>2</sub>MeCCOO)<sub>2</sub>(EtOH)]<sub>2</sub>.EtOH  $(-2J = 347 \text{ cm}^{-1}; \text{ Steward et al., 1996})$  and [Cu- $(PhMe_2CCOO)_2(H_2O)]_2 (-2J = 348 \text{ cm}^{-1}; \text{Fujita et al.},$ 1993). This indicates that there is a negligible influence on the antiferromagnetic interaction when a phenyl group is replaced by a phenoxy group bonded at the  $\alpha$ -carbon of the bridging carboxylate ions.



Acta Crystallographica Section C ISSN 0108-2701 © 1998

## Experimental

Attempts to prepare the dimeric copper(II) pyridine adduct of pciba yielded only the mononuclear complex (II). The Cu atom lies on a center of inversion and the phenyl ring of pciba is approximately parallel to and stacked with one of the intramolecular pyridine rings, with the shortest  $C \cdots C$  distance being 3.467 (3) Å. The carboxylate group forms an asymmetric chelate ring with the Cu atom, and the Cu-O bond lengths are 1.963 (2) and 2.683 (1) Å. A similar (4+2)-coordination of Cu<sup>II</sup> was reported for [Cu(Ph<sub>3</sub>CCOO)<sub>2</sub>(2,6-C<sub>5</sub>H<sub>3</sub>N- $Me_{2}_{2}$ , where the Cu—O distances are 1.936(3) and 2.825 (4) Å (Fujita et al., 1993).



Fig. 1. The molecular structures of (a) (I) and (b) (II), with displacement ellipsoids at the 20% probability level. H atoms are represented by circles of radius 0.1 Å.

## For the preparation of (I), pcibaH (537 mg, 2.5 mmol) and CuCO<sub>3</sub>.Cu(OH)<sub>2</sub>.H<sub>2</sub>O (150 mg, 0.63 mmol) were suspended in aqueous ethanol (1:1, 40 ml). The solution was stirred for 70 min at room temperature and then evaporated to dryness. The green residue was dissolved in methanol (20 ml) to yield a green solution, from which the crystals of (I) were grown. When pyridine was added to the methanol solution, the colour changed from green to purple and crystals of (II) were obtained. The crystal specimen of (I) was sealed in a capillary with the mother liquor to avoid efflorescence.

## Compound (I) Crystal data

 $[Cu_2(C_{10}H_{10}ClO_3)_4 (CH_4O)_2$ ].2CH<sub>3</sub>OH  $M_r = 1109.82$ Triclinic  $P\overline{1}$ a = 9.672(1) Å b = 15.698 (2) Å c = 9.040(2) Å  $\alpha = 104.48(1)^{\circ}$  $\beta = 105.07 (1)^{\circ}$  $\gamma = 88.53 (1)^{\circ}$ V = 1282.1 (3) Å<sup>3</sup> Z = 1 $D_x = 1.437 \text{ Mg m}^{-3}$  $D_m$  not measured Data collection Rigaku AFC-5 diffractometer  $\theta - 2\theta$  scans Absorption correction: by integration (Coppens,

Leiserowitz & Rabi-

6248 measured reflections 5897 independent reflections

 $T_{\rm min} = 0.590, T_{\rm max} = 0.895$ 

novich, 1965)

Mo  $K\alpha$  radiation  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections  $\theta = 10 - 15^{\circ}$  $\mu = 1.102 \text{ mm}^{-1}$ T = 297 KPlate  $0.7 \times 0.5 \times 0.1$  mm Light green

4680 reflections with  $|F_o| > 3\sigma(|F_o|)$  $R_{\rm int}=0.014$  $\theta_{\rm max} = 27.5^{\circ}$  $h = 0 \rightarrow 12$  $k=-20\rightarrow 20$  $l = -11 \rightarrow 11$ 3 standard reflections every 100 reflections intensity decay: none

#### Refinement

Refinement on F R = 0.046wR = 0.042S = 1.154680 reflections 298 parameters H atoms riding  $w = 1/[\sigma^2(F) + 0.000225F^2]$   $(\Delta/\sigma)_{\rm max} = 0.04$  $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

## Table 1. Selected geometric parameters (Å, $^{\circ}$ ) for (I)

| Cu1—Cu1 <sup>i</sup> | 2.6437 (4) | O5-C12  | 1.248 (3) |
|----------------------|------------|---------|-----------|
| Cu1-04               | 1.991 (2)  | O6C13   | 1.441 (3) |
| Cu1—O5'              | 1.971 (2)  | O6C16   | 1.380 (3) |
| Cu1—O7               | 1.972 (2)  | O7—C22  | 1.257 (3) |
| Cu108'               | 1.971 (2)  | O8—C22  | 1.249 (3) |
| Cu1-010              | 2.120 (2)  | O9—C23  | 1.446 (3) |
| Cl2—C19              | 1.737 (3)  | O9—C26  | 1.375 (3) |
| C13—C29              | 1.747 (4)  | O10-C32 | 1.412(4)  |
| O4-C12               | 1.262 (3)  | O11—C33 | 1.396 (4) |

| O4—Cu1—O5 <sup>i</sup>               | 167.9(1) | O8 <sup>i</sup> —Cu1—O10 | 98.2 (1)  |
|--------------------------------------|----------|--------------------------|-----------|
| O4-Cu1-07                            | 89.4 (1) | Cu1-04-C12               | 121.5 (2) |
| O4-Cu1-O8 <sup>i</sup>               | 88.5 (1) | Cu1 <sup>i</sup> —O5—C12 | 124.8 (2) |
| O4-Cu1-010                           | 94.9 (1) | Cu1-07-C22               | 125.6 (2) |
| O5 <sup>i</sup> Cu1O7                | 90.1 (1) | Cu1 <sup>i</sup>         | 120.5 (2) |
| O5 <sup>i</sup> —Cu1—O8 <sup>i</sup> | 89.5 (1) | Cu1-010-C32              | 127.3 (2) |
| O5 <sup>1</sup> —Cu1—O10             | 97.1(1)  | O4-C12-O5                | 125.4 (2) |
| 07—Cu1—O8 <sup>i</sup>               | 167.9(1) | O7—C22—O8                | 125.8 (2) |
| O7-Cu1-O10                           | 93.9(1)  |                          |           |
| <b>a</b> .                           |          |                          |           |

Symmetry code: (i) 1 - x, -y, -z.

## Table 2. Hydrogen-bonding geometry (Å, °) for (I)

| D—H···A                      | D—H             | HA     | $D \cdot \cdot \cdot A$ | $D = H \cdot \cdot \cdot A$ |
|------------------------------|-----------------|--------|-------------------------|-----------------------------|
| O10—H10· · ·O11 <sup>i</sup> | 0.959           | 1.696  | 2.645 (3)               | 170                         |
| 011—H11····04                | 0.960           | 2.015  | 2.892 (2)               | 151                         |
| Symmetry code: (i) 1         | $-x_{1}-y_{2}-$ | 1 - z. |                         |                             |

## Compound (II)

#### Crystal data

| $[Cu(C_{10}H_{10}ClO_3)_2(C_5H_5N)_2]$ | Mo $K\alpha$ radiation                 |
|----------------------------------------|----------------------------------------|
| $M_r = 649.03$                         | $\lambda = 0.71073 \text{ Å}$          |
| Monoclinic                             | Cell parameters from 25                |
| $P2_1/n$                               | reflections                            |
| a = 6.728 (2) Å                        | $\theta = 10 - 15^{\circ}$             |
| b = 16.958(1) Å                        | $\mu = 0.953 \text{ mm}^{-1}$          |
| c = 13.388 (2) Å                       | T = 299  K                             |
| $\beta = 101.38(2)^{\circ}$            | Prism                                  |
| V = 1497.5 (5) Å <sup>3</sup>          | $0.7 \times 0.7 \times 0.5 \text{ mm}$ |
| Z = 2                                  | Purple                                 |
| $D_x = 1.439 \text{ Mg m}^{-3}$        | -                                      |
| $D_m$ not measured                     |                                        |
|                                        |                                        |

## Data collection

| Rigaku AFC-5 diffractom-                   | 2674 reflections with             |
|--------------------------------------------|-----------------------------------|
| eter                                       | $ F_o  > 3\sigma( F_o )$          |
| $\theta$ -2 $\theta$ scans                 | $R_{\rm int} = 0.020$             |
| Absorption correction:                     | $\theta_{\rm max} = 27.5^{\circ}$ |
| by integration (Coppens,                   | $h = 0 \rightarrow 8$             |
| Leiserowitz & Rabi-                        | $k = 0 \rightarrow 22$            |
| novich, 1965)                              | $l = -17 \rightarrow 17$          |
| $T_{\rm min} = 0.546, T_{\rm max} = 0.678$ | 3 standard reflections            |
| 3815 measured reflections                  | every 100 reflections             |
| 3429 independent reflections               | intensity decay: none             |

## Refinement

| Refinement on F                     | $(\Delta/\sigma)_{\rm max} = 0.002$                        |
|-------------------------------------|------------------------------------------------------------|
| R = 0.043                           | $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$  |
| wR = 0.048                          | $\Delta \rho_{\rm min} = -0.66 \ {\rm e} \ {\rm \AA}^{-3}$ |
| S = 1.34                            | Extinction correction: none                                |
| 2674 reflections                    | Scattering factors from Inter-                             |
| 187 parameters                      | national Tables for X-ray                                  |
| H atoms riding                      | Crystallography (Vol. IV)                                  |
| $w = 1/[\sigma^2(F) + 0.000225F^2]$ |                                                            |

| Table 3. Selected | geometric | parameters | (Å, | °) | for | (II) |
|-------------------|-----------|------------|-----|----|-----|------|
|-------------------|-----------|------------|-----|----|-----|------|

| 0         | -                                                                                    |                                                                                                                          |
|-----------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 1.963 (2) | O3—C7                                                                                | 1.273 (3)                                                                                                                |
| 2.683(1)  | O4—C7                                                                                | 1.230 (3)                                                                                                                |
| 1.996 (2) | O5—C8                                                                                | 1.446 (3)                                                                                                                |
| 1.747 (3) | O5-C11                                                                               | 1.370 (3)                                                                                                                |
| 91.3(1)   | Cu1-03-C7                                                                            | 107.1 (2)                                                                                                                |
| 83.2 (2)  | O3—C7—O4                                                                             | 124.0 (2)                                                                                                                |
| 54.2 (2)  |                                                                                      |                                                                                                                          |
|           | 1.963 (2)<br>2.683 (1)<br>1.996 (2)<br>1.747 (3)<br>91.3 (1)<br>83.2 (2)<br>54.2 (2) | 1.963 (2) 03C7<br>2.683 (1) 04C7<br>1.996 (2) 05C8<br>1.747 (3) 05C11<br>91.3 (1) Cu103C7<br>83.2 (2) 03C7O4<br>54.2 (2) |

Hydroxyl H atoms of MeOH in (I) were located from difference syntheses. A riding model [O--H and C--H

distances of 0.96 Å, and  $U_{iso}(H) = 0.1 \text{ Å}^2$  was used for all H atoms in (I) and (II).

For both compounds, data collection: AFC/MSC Diffractometer Control System (Rigaku Corporation, 1993); cell refinement: AFC/MSC Diffractometer Control System; data reduction: local programs; program(s) used to solve structures: CRYSTAN-GM (Edwards et al., 1996); program(s) used to refine structures: CRYSTAN-GM; molecular graphics: CRYSTAN-GM; software used to prepare material for publication: CRYSTAN-GM.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1037). Services for accessing these data are described at the back of the journal.

### References

- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.
- Edwards, C., Gilmore, C. J., Mackay, S. & Stewart, N. (1996). CRYSTAN-GM. Version 6.3.3. Computer Program for the Solution and Refinement of Crystal Structures. MacScience, Japan.
- Fujita, T., Ohba, S., Nagamatsu, M., Tokii, T., Jury, C. F., Steward, O. W. & Kato, M. (1993). Acta Cryst. C49, 2095–2100.
- Mak, T. C. W., Kennard, C. H. L., Smith, G., O'Reilly, E. J., Sagatys, D. S. & Fulwood, J. C. (1987). *Polyhedron*, 6, 855–861.
- Reck, G. & Jaehnig, W. (1979). J. Prakt. Chem. 321, 549-554.
- Rigaku Corporation (1993). AFC/MSC Diffractometer Control System. Rigaku Corporation, Tokyo, Japan.
- Smith, G., O'Reilly, E. J., Kennard, C. H. L. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 243-251.
- Steward, O. W., Johnston, B. S., Chang, S.-C., Harada, A., Ohba, S., Tokii, T. & Kato, M. (1996). Bull. Chem. Soc. Jpn, 69, 3123–3137.

Acta Cryst. (1998). C54, 195-197

# Diaquabis[*N*-(1-naphthyl)-*N*-nitrosohydroxylaminato-*O*, *O*']cobalt(II)

KYOKO TAMAKI AND NOBUO OKABE

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577, Japan

(Received 26 April 1996; accepted 15 October 1997)

#### Abstract

In the title compound,  $[Co(C_{10}H_7N_2O_2)_2(H_2O)_2]$ , prepared from neocupferron and  $(NH_4)_2[Co(SO_4)_2(H_2O)_6]$ , the Co<sup>II</sup> ion has slightly distorted octahedral coordination defined by six O atoms from the two bidentate ligands and the two water molecules, in a *cis* arrangement [Co—O 2.073 (2)–2.124 (3) Å]. The molecule has crystallographic  $C_2$  symmetry. The plane of the nitrosohydroxylaminato group is twisted out of the plane of the naphthyl ring.